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Catalytic Regioselective Control in the Diastereoselective 1,3-Dipolar
Cycloaddition Reactions of 1-(1-Alkynyl) ACHTUNGTRENNUNGcyclopropyl Ketones with Nitrones

Yanqing Zhang,[a] Feng Liu,[a] and Junliang Zhang*[a, b]

One of the challenges in modern synthesis is the creation
of distinct types of complex molecules from identical start-
ing materials by subtly altering the choice of catalyst.[1] Re-
cently, much attention has been paid to 1-(1-alkynyl)cyclo-
propyl ketones due to their unique structures and reactivi-
ties. For example, Schmalz[2a] and Zhang[2b–c] have successful-
ly developed gold-catalyzed tandem reactions of 1-(1-alky-
nyl)cyclopropyl ketones to efficiently construct highly
substituted furans and carbobicycles. In addition, we very re-
cently developed a RhI-catalyzed carbonylation reaction of
1-(1-alkynyl)cyclopropyl ketones that leads to fused 5,5-bi-
cyclic furans.[3]

After our study of the gold-catalyzed cycloaddition reac-
tions of 2-(1-alkynyl)-2-alken-1-ones with nitrones and as a
continuation of our efforts to design and develop novel re-
giodivergent reactions,[4] we became interested in the Lewis
acid catalyzed 1,3-dipolar cycloaddition reactions of 1-(1-al-
kynyl)cyclopropyl ketones 1 with nitrones 2.[5] We envisaged
that these reactions might provide two different types of
adduct by two regioselective cycloaddition reactions
(Scheme 1): 1) tetrahydro-1,2-oxazines 3 through 1,3-dipolar
(formal [3+3]) cycloaddition of nitrones to the cyclopropane
moiety of 1[6,7] and 2) 5,7-fused heterobicyclic furo ACHTUNGTRENNUNG[3,4-d]-ACHTUNGTRENNUNG[1,2]oxazepines 4 through tandem double cyclization
(formal [4+3] cycloaddition) of nitrone 2 with 1.[8,9] How to
efficiently control these two types of cycloaddition reaction

is an interesting, but troublesome, issue. Herein, we report
our recent result that this regioselectivity can be controlled
by subtle changes in the choice of catalyst. Furthermore, a
kinetic resolution study and the transformation of an opti-
cally active substrate provide evidence supporting the pro-
posed mechanism of the gold(I)-catalyzed tandem cycliza-
tion/[4+3] cycloaddition.

This hypothesis was initially tested by reacting 1-(1-alky-
nyl)cyclopropyl ketone 1 a with nitrone 2 a under catalysis
by a series of Lewis acids. After numerous attempts, we
were pleased to find that the reaction gave tetrahydro-1,2-
oxazine 3 aa in 90 % isolated yield with a diastereomeric
ratio of 92:8 under conditions A: Sc ACHTUNGTRENNUNG(OTf)3 (10 mol %, Tf=

triflate), 1,10-pheneanthroline (10 mol %), 4 � molecular
sieves (MS), 1,2-dichloroethane (DCE), 28–32 8C
(Table 1).[10] In contrast, the corresponding 5,7-fused bicyclic
furo ACHTUNGTRENNUNG[3,4-d]ACHTUNGTRENNUNG[1,2]oxazepine 4 aa was isolated in 96 % yield, as
a single diastereomer (d.r.>20:1), under the catalysis of
Ph3PAuOTf (2 mol %) in CH2Cl2 at room temperature (con-
ditions B). Interestingly, the reaction gave both formal [3+3]
cycloadduct 3 aa (25 % 1H NMR yield) and [4+3] cycload-
duct 4 aa (25 % 1H NMR yield) under the catalysis of
AgOTf after 2 days with 50 % conversion. Other Lewis
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Scheme 1. Proposed reaction pattern for 1-(1-alkynyl)cyclopropyl ketones
with nitrones.
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acids, such as YbACHTUNGTRENNUNG(OTf)3, NiClO4, and Sc ACHTUNGTRENNUNG(OTf)3 without lig-ACHTUNGTRENNUNGands were also tested and gave 3 aa in lower yields.
With the optimal reaction conditions in hand, we studied

the scope of these Lewis acid catalyzed, regioselectively tun-
able, cycloaddition reactions (Tables 2 and 3). The gold(I)-
catalyzed,[11] formal [4+3] cycloaddition reactions of ketones
1 with nitrones 2, which form compounds 4, are very fast
and most are completed within 10–20 min, the exceptions
being nitrone 2 f (Table 2,
entry 10) and ketone 1 j
(Table 3, entry 18). On the
other hand, the Sc ACHTUNGTRENNUNG(OTf)3-cata-
lyzed formal [3+3] cycloaddi-
tion reactions to form com-
pounds 3 require several hours
to consume all of ketone 1. Al-
though the diastereoselectivity
of the Sc ACHTUNGTRENNUNG(OTf)3-catalyzed trans-
formation is good (d.r.= 2.2–
15.7:1, with most >5:1), the
gold(I)-catalyzed reaction gives
the cycloadducts with excellent
diastereoselectivity (>20:1). It
is worth noting that under both
conditions A and B the cyclo-
additions are regiospecific, that
is, no [4+3] cycloadduct was de-
tected under conditions A and
vice versa. Various functional
groups, such as cyclohexenyl,
cyclopropane, and esters are
tolerated, which indicates that
the reactions, under both sets
of conditions, are highly chemo-
selective. Substituents on the
nitrone (R4 and R5) have a
greater impact on the diastereo-
selectivity of the reaction than

those on the ketone (R1, R2, and R3) in the Sc ACHTUNGTRENNUNG(OTf)3-cata-
lyzed case. However, for the substrate in which R3 = H (1 j),

Table 1. Testing the reaction of 1a and 2 a with various Lewis acid cata-
lysts.[a]

Conditions 3 aa 4 aa
Yield [%] d.r. Yield [%] d.r.

A 90 11.5:1 0 –
B 0 – 96 <20:1
C 25[b] 10:1 25[b] –

[a] Conditions A: 1,10-phenanthronine (10 mol %), ScACHTUNGTRENNUNG(OTf)3 (10 mol %),
MS 4 �, DCE, 28–32 8C, 9.5 h; conditions B: Ph3PAuOTf (2 mol %),
CH2Cl2, RT, 10 min; conditions C: AgOTf (10 mol %), MS 4 �, DCE,
30 8C, 2d. [b] Yield derived from the 1H NMR spectra.

Table 2. Tuning the regioselectivity of the 1,3-diploar cycloadditions of 1-
(1-alkynyl)-cyclopropyl ketone 1a with nitrones 2.[a]

R4 R5 2 Conditions t [h] Yield [%][b] d.r.[c]

1 1-furanyl Ph 2 b A 5.5 3 ab 85 15.7:1
2 2 b B 0.3 4 ab 93 >20:1
3 4-NO2C6H4 Ph 2 c A 6.5 3 ac 68 4.3:1
4 2 c B 0.3 4 ac 85 >20:1
5 4-MeOC6H4 Ph 2 d A 9.5 3 ad 97 13.3:1
6 2 d B 0.3 4 ad 89 >20:1
7 styryl Ph 2 e A 27 3 ae 69 4.0:1
8 2 e B 0.3 4 ae 92 >20:1
9 Ph Bn 2 f A 17.5 3 af 82 2.2:1

10 2 f B 6 4 af 73 >20:1

[a] Conditions A: Sc ACHTUNGTRENNUNG(OTf)3 (10 mol %), 1,10-phenanthroline monohy-
drate (10 mol %), 4 � MS, DCE, 28–32 8C; conditions B: Ph3PAuOTf
(2 mol %), DCM, RT; 1.5 equivalents of the nitrone was used under con-
ditions A and 1.1 equivalents of the nitrone was used under conditions B.
[b] Isolated yield. [c] Diastereoselectivity was determined by 1H NMR
analysis of the crude product.

Table 3. Tuning the regioselectivity of the 1,3-diploar cycloadditions of 1-(1-alkynyl)-cyclopropyl ketones 1
with nitrone 2 a.[a]

R1 R2 R3 1 Conditions t [h] Yield [%][b] d.r.[c]

1 Me cyclopropyl Ph 1b A 7 3ba 73 6.1:1
2 1b B 0.3 4ba 99 >20:1
3 Me n-C4H9 Ph 1c A 48 3ca 52 6.7:1
4 1c B 0.3 4ca 81 >20:1
5 Me 1-cyclohexenyl Ph 1d A 21 3da 73 13.3:1
6 1d B 0.3 4da 94 >20:1
7 Me AcOC2H4 Ph 1e A 8 3ea 65 7.3:1
8 1e B 0.25 4ea 71 >20:1
9 Me 1-naphthyl Ph 1 f A 21 3 fa 84 5.3:1

10 1 f B 0.3 4 fa 73 >20:1
11 Me 4-MeOC6H4 4-MeOC6H4 1g A 5 3ga 72 9.0:1
12 1g B 0.6 4ga 86 >20:1
13 Me Ph 4-MeOC6H4 1h A 5.5 3ha 93 1.5:1
14 1h B 0.25 4ha 85 >20:1
15 Ph Ph Ph 1 i A 3.5 3 ia 40 9.0:1
16 1 i B 0.3 4 ia 81 >20:1
17 Et Ph H 1j A 24 3ja 0 –
18 1j B 1 4ja 62 >20:1

[a] Conditions A: Sc ACHTUNGTRENNUNG(OTf)3 (10 mol %), 1,10-phenanthroline monohydrate (10 mol %), 4 � MS, DCE, 28–
32 8C; conditions B: Ph3PAuOTf (2 mol %), CH2Cl2, RT. [b] Isolated yield. [c] Diastereoselectivity was deter-
mined by 1H NMR analysis of the crude product.

Chem. Eur. J. 2010, 16, 6146 – 6150 � 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemeurj.org 6147

COMMUNICATION

www.chemeurj.org


the reaction did not occur at all under conditions A, but did
give the [4+3] cycloadduct 4 ja in 62 % yield under condi-
tions B (Table 2, entries 17 and 18). The structures and rela-
tive stereochemistries of 4 ga and the major diastereomer of
3 ga were further confirmed by single-crystal X-ray diffrac-
tion analysis (Figure 1).[12]

Furthermore, the gold-catalyst loading can be reduced to
only 0.2 mol % and the reaction still proceeds smoothly with
no reduction in either the yield, or the diastereoselectivity
of a 2.5 mmol scale reaction, which makes this method more
practical. For example, the formal [4+3] cycloaddition reac-
tion of 1 a (2.5 mmol) with 2 a (2.75 mmol) can be performed
in 10 min to give a 94 % yield of 4 aa.

Plausible mechanisms that account for these regioselec-
tively tunable cycloadditions are depicted in Scheme 2.
Under conditions A (cycle 1), the Sc ACHTUNGTRENNUNG(OTf)3/1,10-phenanthro-
line complex coordinates selectively to the carbonyl group
giving intermediate A, which makes the cyclopropane reac-
tive enough to regioselectively react with the nitrone and
form enolate intermediate B.[6] Subsequent ring closure
gives the formal [3+3] cycloadduct and regenerates the cata-
lyst. The major diastereomer may be formed from the more
favorable chair-like conformation of intermediate B. In con-
trast, the cationic gold(I) species preferentially binds to the

alkyne,[14] rather than the carbonyl, and, thus, mediates nu-
cleophilic attack to give oxonium-containing vinyl–gold in-
termediate C (cycle 2). This is followed by the regioselective
homo-Michael addition of nitrone 2 at the more substituted
position of the cyclopropyl ring,[6,2a,15] which produces furan-
yl–gold intermediate D ; in turn, this, upon ring closure,
gives the formal [4+3] cycloadduct and regenerates the gold
catalyst. The high diastereoselectivity of this reaction may
result from the more favorable chair-like conformation of
intermediate D. An alternative, plausible catalytic cycle
(cycle 3) for the formation of the formal [4+3] cycloadduct,
could not be ruled out by the results described so far. In this
catalytic cycle, a key carbocationic furanyl–gold intermedia-
te E would be formed. Subsequent nucleophilic addition of
the nitrone to the carbocation would produce intermediat-
e D, which, in turn, would give the final product by the
same ring closure step as in cycle 2.

In order to gain an insight into the mechanism of the for-
mation of compounds 4, a control experiment without the
addition of the nitrone was performed. This showed that the
cycloisomerization of 1-(1-alkynyl)cyclopropyl ketone 1 a
into the trisubstituted furan is very slow under conditions B,
indicating that the nitrone is involved in the cyclopropyl
ring-opening step, which is consistent with Schmalz�s
work.[2a] Further studies (Scheme 3) on the kinetic resolu-
tion[6f] of a racemic mixture of 1 a and the transformation of
optically active ent-1 a provided further strong supporting
evidence for the proposed cycle (cycle 2, Scheme 2). For ex-
ample, the reaction of racemic 1 a with nitrone 2 a under the
catalysis of the (R)-C3-TunePhos-derived[16] gold complex
was quenched, before completion, after 29 h and gave a
55 % yield of ent-4 aa in 38 % ee and 19 % of ent-1a, in
84 % ee, was recovered. However, if the reaction was al-
lowed to go to completion a racemic mixture of cycloadduct
4 aa was formed. Interestingly, optically active ent-1 a react-
ed smoothly with nitrone 2 a under the catalysis of

Figure 1. X-ray crystal structures of compounds 3ga (upper) and 4 ga
(lower).

Scheme 2. Plausible mechanisms for this catalytically tunable, regioselec-
tive 1,3-dipolar cycloaddition.
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Ph3PAuCl/AgOTf to give the optically active ent-4 aa’ in
high yield with the same level of enantiomeric purity as the
starting materials. With these results, the reaction pathway
through carbocationic furanyl–gold intermediate E (cycle 3)
can be ruled out.

In summary, we have developed a Lewis acid catalyzed,
regioselective, 1,3-dipolar cycloaddition of nitrones to 1-(1-
alkynyl)cyclopropyl ketones, in which the cycloaddition pat-
tern can be tuned by the selection of the catalyst. In the
presence of the Sc ACHTUNGTRENNUNG(OTf)3/1,10-phenanthroline catalyst, the
reaction undergoes formal [3+3] cycloaddition to afford
highly substituted, multifunctionalized tetrahydro-1,2-oxa-
zines in moderate to excellent yields with up to 15.7:1 dia-
stereomeric ratio, whereas 5,7-fused bicyclic furo ACHTUNGTRENNUNG[3,4-d]-ACHTUNGTRENNUNG[1,2]oxazepines can be obtained in good to excellent yields
with excellent diastereoselectivity from a gold-catalyzed
formal [4+3] cycloaddition. Further studies, including kinet-
ic resolution and synthetic applications, are ongoing in our
laboratories and will be reported in due course.

Experimental Section

For preparative procedures and spectroscopic data for all new com-
pounds, see the Supporting Information.

Synthesis of 3aa (conditions A): In a glove box, Sc ACHTUNGTRENNUNG(OTf)3 (0.025 mmol,
12.3 mg), 1,10-phenanthroline monohydrate (0.025 mmol, 5.0 mg), 4 �
MS (50 mg), and DCE (2 mL) were added to a dry Schlenk tube. After
the solution was stirred for 15 min, nitrone 2a (74.0 mg, 0.375 mmol) and
ketone 1a (0.25 mmol, 65.0 mg) were added. Following stirring for 7 h at
28–32 8C, the reaction was complete, as determined by TLC analysis. Fil-
tration and concentration under reduced pressure provided the residue,
which was purified by flash column chromatography on silica gel (hex-
anes/diethyl ether = 30:1) to afford the pure product 3 aa (103.0 mg, d.r.=
11.5:1) in 90% yield.

Synthesis of 4 aa (conditions B): A solution of Ph3PAuOTf (1 mL, 0.01 m

in CH2Cl2, 2 mol %) was added to a solution of ketone 1 a (130 mg,
0.5 mmol) and nitrone 2 a (102.9 mg, 0.55 mmol, 1.1 equivalents) in
CH2Cl2 (1 mL) at room temperature. The resulting mixture was stirred

for 10 min at room temperature until the reaction was complete, as deter-
mined by TLC analysis. After filtration and concentration under reduced
pressure, the residue was purified by flash column chromatography on
silica gel (hexanes/diethyl ether =50:1) to afford the pure product 4 aa
(219.1 mg, d.r.=>20:1) in 96 % yield as a white solid.
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